Problem 75

(a) A person's blood pressure is measured to be $120 \pm 2 \mathrm{~mm}$ Hg. What is its percent uncertainty?
(b) Assuming the same percent uncertainty, what is the uncertainty in a blood pressure measurement of 80 mm Hg ?

Solution

Part (a)

Use the formula for percent uncertainty and plug in the numbers.

$$
\text { Percent Uncertainty }=\frac{\delta A}{A} \times 100 \%=\frac{2 \mathrm{~mm} \mathrm{Hg}}{120 \mathrm{~mm} \mathrm{Hg}} \times 100 \% \approx 2 \%
$$

Part (b)
Start with the same formula.

$$
\text { Percent Uncertainty }=\frac{\delta A}{A} \times 100 \%
$$

Assume that the percent uncertainty is the same as in part (a) and that the blood pressure is 80 mm Hg .

$$
\frac{2 \mathrm{~mm} \mathrm{Hg}}{120 \mathrm{~mm} \mathrm{Hg}} \times 100 \%=\frac{\delta A}{80 \mathrm{~mm} \mathrm{Hg}} \times 100 \%
$$

Solve for δA, the uncertainty.

$$
\frac{2}{120}=\frac{\delta A}{80 \mathrm{~mm} \mathrm{Hg}}
$$

Multiply both sides by 80 mm Hg .

$$
\delta A=\frac{2(80)}{120} \mathrm{~mm} \mathrm{Hg}=\frac{4}{3} \mathrm{~mm} \mathrm{Hg} \approx 1 \mathrm{~mm} \mathrm{Hg}
$$

Consequently,
Minimum Blood Pressure: $80 \mathrm{~mm} \mathrm{Hg}-\frac{4}{3} \mathrm{~mm} \mathrm{Hg} \approx 79 \mathrm{~mm} \mathrm{Hg}$
Maximum Blood Pressure: $80 \mathrm{~mm} \mathrm{Hg}+\frac{4}{3} \mathrm{~mm} \mathrm{Hg} \approx 81 \mathrm{~mm} \mathrm{Hg}$.

